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Abstract  

The goal of this research is to estimate the mode shapes of a non-uniform beam using sensed 
displacements, via accelerometers, at regular intervals along the beam.  This body of work 
continues the research of Yadalam and Feeny [1] on reduced mass-weighted proper orthogonal 
modal decomposition for modal analysis.  In regular proper orthogonal decomposition (POD), 
the ensemble matrix X, typically built from measured displacements, is used to construct the 
correlation matrix R=1/N XXT, where N is the number of samples taken of the displacement 
vector x, where x = [x1 x2 … xM]T, and M is the number of sensors.  Then each row of X is the 
time history of each sensor.  For example, the first row is x1= [x1(0), x1(t), x1(2t), …, 
x1(Nt)]T.  The proper orthogonal modes (POMs) are computed by solving the eigensystem 
Rv=λv [2, 3].  For a uniform, lightly damped, free vibration system, the POMs resemble the 
linear normal modes (LNMs) [4].  For non-uniform systems the weighted eigenvalue 
problem RMv=λv, where M is the mass matrix, produces estimates of the linear normal modes.  
Since the dimension of the mass matrix of the beam is large compared to the dimensions of R, 
interpolating functions can be used to compute a reduced-mass matrix Mr.  Then the eigensystem 
RMrv=λv is solved. The eigenvectors correlate to the linear normal modes, and the eigenvalues 
relate to spectrum energy density of those modes.   

In this work, the free-response displacement time histories of a cantilevered saw blade (a non-
uniform, thin steel, cantilevered beam) were obtained by integrating M = 11 sensed 
accelerometer signals, sampled at the time interval t = 0.0002 sec, and then used to build the 
ensemble matrix X.  The beam was 11 inches long, 0.01 inches thick, and the width varied from 
1 inch at the tip to four inches at a distance of 2 inches from the clamp.  The beam was clamped 
so that its centerline was horizontal, and flexural displacements were horizontal.  The matrix Mr 
was computed by integrating linear interpolating tent functions through the mass distribution of 
the beam.  A fast Fourier transform of an accelerometer signal indicated modal frequencies of 
8.545 Hz, 40.28 Hz, 107.4 Hz, 205.1 Hz, 498 Hz, and 677.5 Hz.  The accelerometer behavior 
was phase-distorted near the first (lowest) modal frequency of the beam.  Therefore, a high-pass 
filter of 20 Hz was applied, removing this distortion, but consequentially removing the activity of 
the first mode.  The mass-weighted POD, as well as the regular POD for comparison, was 
performed on the filtered data.  Figure 1 shows the extracted shapes of the second, third, fourth 
and fifth flexural modes of the beam.  In the figure, the blue () curves are the mode shapes from 
the mass-weighted POD, the green () curves are from the regular POD, and the red (O) curves 
are from a finite element analysis, and are regarded as approximations to the LNMs.   The 



second mode is dominant in the signals, and expected to be the closest fit for both mass-weighted 
and regular POD.  The third mode shows high accuracy with the mass-weighted POD.  The next 
modes are satisfactory, but tend to have accumulated error from the previous modes.  
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Figure 1.  Plots of mode estimates for the 2nd , 3rd, 4th and 5th modes.  The blue () curves are the mode shapes from the 

mass-weighted POD, the green () curves are from the regular POD, and the red (O) curves are from a finite element 
analysis. 
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